
SD21 - 21 Channel Servo Driver Module
Technical Specification

The SD21 is a 21 channel servo controller module. It will drive up to 21 RC servo's and maintain a
20mS refresh rate, regardless of the number of servo's used or their positions (pulse widths). It will
control both position and speed of the servo's. It's controlled by sending commands to the on-board
PIC18F2220 over the I2C bus. There are 3 I2C connectors on the board, any one of which can be
used to connect to your controller. Alternatively, many controllers such as the Picaxe, BS2p, Atom,
BX-24 etc. can be fitted directly to the module, making this a great animatronics controller.

Power
There are two ways to power the SD21. The first is to used a 5v supply for the processor section and
a separate 6v-7.2v supply for the servo's. This is the recommend method, and the 4-way terminal
block allows for this option. The logic and servo grounds are internally connected on the PCB. Not
everyone wants to use two batteries, so we have allowed for the use of a single (typically 7.2v)
battery to power the servo's and the module. To do this place a link on the two pin header below the
terminal block. This routes servo power to a low drop 5v regulator which supplies the logic. The
connections must be made to the servo terminals on the terminal block - NOT the logic ones. The
SD21 monitors the servo battery voltage, which is available for reading from an internal register.

Servo's
The servo's are plugged directly onto the SD21, with the ground pin (black wire on a hitec servo)
nearest the outside of the PCB.

Basic Stamp BS2p or compatible controller
A 24 pin socket on the SD21 will accept a BS2p or compatible controller such as the ATOM or BX-
24. The Stamp is fitted with pin 1 nearest the outside of the module and away from the servo
connectors. The BS2p P0(pin5)/P1(pin6) are used for the I2C SDA/SCL lines. These are the only I/O
pins used on the module, the remainder are brought out on the 16 pin header, as shown above.

Picaxe Controller
A 18 pin socket on the SD21 will accept the PICAXE-18X. Outputs 1 and 4 are used for I2C (they
are the hardware I2C port on the PIC) and the remaining inputs and outputs are available on the 16
pin header. The Picaxe is fitted with pin 1 nearest the outside of the module and away from the servo
connectors.

Servo Processor
The heart of the SD21 is a pre-programmed PIC18F2220 chip. This is accessed over the I2C bus at
address 0xC2 ($C2) by one of the controller options above, fitted to the module, or from an external
controller connected to one of the I2C connectors. There are three internal registers associated with
each of the 21 servo's. The speed and low byte/high byte of the position.

Servo Position
The position (low byte/high byte) is a 16 bit number which directly sets the output pulse width in uS.
Setting the position to 1500 (1500uS or 1.5mS) will set most servo's to their center position. The
range of pulse widths that are normally supported are from 1000uS (1mS) to 2000uS (2mS). It is
usually possible to go beyond these limits though. On a Hitec HS311 servo, we can set the position
from 800 to 2200 to give a nice wide range of movement. Take care though as its easy to make the
servo run into its internal stops if you give it pulse widths at the upper or lower extremes. The
registers can also be read back. The position will be the current position of the servo during a speed
controlled movement, so you can track its progress towards the requested position.

Servo Speed
The speed register controls the speed at which the servo moves to its new position. The servo pulses
are automatically refreshed every 20mS. If the Speed register is zero (0x00) then the servo is simply
set to the requested position. On power up the Speed registers are set to zero to give full speed, so
unless you need to slow them down the Speed registers can be ignored. If the Speed register is set to
something other than zero then that value is added to the current position every 20mS until the target
position is reached. If you wish to move from 1000 to 2000 and the Speed register is set to 10, then it
will take 2 seconds to reach the set position. The formula for the time it will take to make the move
is:
((Target position-Start position)/Speed Reg)*20mS
Here are some examples:

Register Servo Function Register Servo Function Register Servo Function
0 1 Speed 24 9 Speed 48 17 Speed
1 1 Low byte 25 9 Low byte 49 17 Low byte
2 1 High byte 26 9 High byte 50 17 High byte
3 2 Speed 27 10 Speed 51 18 Speed
4 2 Low byte 28 10 Low byte 52 18 Low byte
5 2 High byte 29 10 High byte 53 18 High byte
6 3 Speed 30 11 Speed 54 19 Speed
7 3 Low byte 31 11 Low byte 55 19 Low byte
8 3 High byte 32 11 High byte 56 19 High byte
9 4 Speed 33 12 Speed 57 20 Speed

10 4 Low byte 34 12 Low byte 58 20 Low byte
11 4 High byte 35 12 High byte 59 20 High byte
12 5 Speed 36 13 Speed 60 21 Speed
13 5 Low byte 37 13 Low byte 61 21 Low byte
14 5 High byte 38 13 High byte 62 21 High byte
15 6 Speed 39 14 Speed 63 -
16 6 Low byte 40 14 Low byte 64 - Software version
17 6 High byte 41 14 High byte 65 - Battery Volts
18 7 Speed 42 15 Speed
19 7 Low byte 43 15 Low byte
20 7 High byte 44 15 High byte
21 8 Speed 45 16 Speed
22 8 Low byte 46 16 Low byte
23 8 High byte 47 16 High byte

Start Position Target Position Speed Reg Time for Move
2000 1000 10 2000mS (2Sec)
1000 2000 10 2000mS (2Sec)

More Registers!
The servo's can be fully controlled by the above registers, however to make things easier for low
resource controllers such as the Picaxe, there is another set of registers (63-83 inclusive). These can
set the position by writing a single byte rather than two bytes. These are not physically implemented
registers, so cannot be read back. When you write to them, the processor will multiply the number
you write by 6 then add an offset of 732 and store the result in the real 16-bit registers described
above. This gives you a range of 732 (0*6+732) to 2268 (256*6+732) in 6uS steps. This set of
registers is called the Base set. The formula is:
Base Reg*6+732uS
Although you can't read them back, the data is stored internally, and used with another two sets of
registers. These are positive (84-104) and negative (105-125) offsets. When you write to the positive
offset address the processor will add it to the base position, multiply by 6 and add 732. It performs a
similar function for negative offsets. the formulas are:
(BaseReg + PosReg) * 6 + 732 and
(BaseReg - NegReg) * 6 + 732

Register Summery
For precision control of the servo's there is the real 16-bit registers which sets the servo position
directly in uS. For low resource controllers the servo's can be controlled by 8-bit values. The positive
and negative offset registers make designing walking robots very easy where legs can be easily
moved either side of a central position. We have examples of controlling a Lynxmotion EH2 robot
with a BS2p Stamp using the 16-bit registers and the Picaxe doing the same using the 8-bit Base and
Offset registers.

1000 2000 1 20000mS (20Sec)
1000 2000 100 200mS (0.2Sec)
1234 1987 69 220mS (0.22Sec)

Servo Base Reg Pos Offset Reg Neg Offset Reg
1 63 84 105
2 64 85 106
3 65 86 107
4 66 87 108
5 67 88 109
6 68 89 110
7 69 90 111
8 70 91 112
9 71 92 113
10 72 93 114
11 73 94 115
12 74 95 116
13 75 96 117
14 76 97 118
15 77 98 119
16 78 99 120
17 79 100 121
18 80 101 122
19 81 102 123
20 82 102 124
21 83 104 125

Software Revision Number
Register 64 is the software revision number (3 at the time of writing this).

Battery Voltage
Register 65 contains the servo battery voltage in 39mV units up to a maximum of 10v. A battery
voltage of 7.2v will read about 184. 6v will read about 154. It is updated every 20mS whether its
read or not.

Address
The SD21 Servo module is located at address 0xC2 on the I2C bus.

Example Code
This shows how to use a BS2p Stamp to control a servo. It sets up a simple loop which sends the
servo between two positions

This does the same for the Picaxe controller using the alternative register set.

'{$STAMP BS2p}

SDA CON 0 ' SDA on pin0, SCL on pin1
SD21 CON $C2 ' SD21 I2C address
Servo1 CON 0 ' register address of servo1 speed reg (followed by pos
low/pos high)
Speed CON 0 ' maximum speed
Servo1p CON 1800 ' Right position
Servo1n CON 1200 ' Left position

Servo VAR W0

Loop:
 Servo = Servo1p
 I2COUT SDA, SD21, Servo1, [Speed, Servo.LOWBYTE, Servo.HIGHBYTE]
 PAUSE 300
 Servo = Servo1n
 I2COUT SDA, SD21, Servo1, [Speed, Servo.LOWBYTE, Servo.HIGHBYTE]
 PAUSE 300
 GOTO Loop

Servo1 = 63 ' servo 1 base register
Servo1p = 84 ' servo 1 positive offset register
Servo1n = 105 ' servo 1 negative offset register
Base = 128 ' centre position

Offset = 50 ' +/- 50 from centre position

ProgStart:
 writei2c Servo1, (Base)
Loop:
 writei2c Servo1p, (Offset)

 pause 300
 writei2c Servo1n, (Offset)
 pause 300
 goto Loop

