
AIRAT2 USER MANUAL
Contents

AIRAT2
1. Specifications
2. Introduction

3. Features

4. Battery

1) Connection

2) Charge

MOUSE OPERATION
1. Introduction

2. Downloading Program

3. Mouse Operation and Main Menu

1) Key Operation

2) Main Menu

4. RUN Test

5. Program Explanation

1) Simulator Program

2) AIRAT2 Program

3) Miscellaneous Program

6. Driving Stepping Motor

Main Board Silkscreen
Main Board Schematic
Sensor Board Schematic

AIRAT2
1. Specifications

Item Description

SIZE 114 × 88 mm

CPU BOARD JS8051-A2 with LCD
BODY FRAME

144 × 67 mm(Aluminum)

WHEEL Aluminum Wheel(ø51.3 with rubber) × 2, small-size

Ball Caster × 2

MOTOR Stepping Motor(H546) × 2

SENSOR IR LED(EL-1KL) × 6, Photo TR(ST-1KL) × 6

BUZZER Piezo Buzzer(BTG-47) driving by frequency
LED 1 Power LED, 3 User-LED.

KEY Reset, User Key × 2.

SERIAL RS232C(115,200 bps down loading).

BATTERY Packed NiMH(7.2 Volt 450 mAh) × 2

POWER DC 14.4V

OTHER .User program can be downloaded to RAM or FLASH
memory with default 115,200 bps.

.FLASH memory works like EEPROM.

.Serial Cable.

.Sample Program(C Language).

.Serial Downloading Program & Utilities.

.Software Mouse Simulator & Source(Borland C++)

2. Introduction

AIRAT2 is a micromouse robot which uses an 8051 CPU. The AIRAT2 emits a beam of infrared

light and uses sensors to receive the amount reflected back. The CPU board utilizes the JS8051-A2

board. The JS8051-A2 is very well constructed. It uses powerful outside resources such as LCD,

ADC, two external Timers, Self FLASH Writing and more, thus allowing the hardware to be easily

and conveniently developed. The AIRAT2 has 6 sensors enabling it to move diagonally. A PC

simulator is provided which enables the user to more easily understand the high-level mouse

search algorithm. The C source code is provided so that the programmer can easily develop

algorithms, which can be tested on the simulator and then moved to the mouse. In addition, LCD,

serial communication, mouse control and other functions are provided as library and source files.

Besides the basic utility program, the programs generating accelerating/decelerating table code and

various turning table codes are provided with their sources. For those who want to learn high-level

mouse skills AIRAT2 provides an excellent environment for development, test environments,

algorithms and much more.

3. Features

 • Uses the convenient JS8051-A2 development environment.(refer to JS8051-A2 manual).

 • Ability to constantly self adjust and move diagonally using 6 sensors.

 • Sleek design, small size and easily assembled/disassembled.

 • PC simulators used to accelerate development and testing.

 • During development information encoded on the mouse can be viewed using a PC.

 • Libraries, source codes and utilities are provided.

 • Convenient recharging port (no need for the batteries to be taken out).

 • Produces a variety of sounds through frequency control.

 • Arrangement of LED with design in mind and clean cable disposition.

 • Assembly instructions and user's manual.

4. Battery

1) Connection

The AIRAT2 uses two 7.2V NiMH(450mA) packed batteries. One is at the front, and the other

is at the back of the robot. Connect the front battery to the JP3 and the rear battery to the JP4,

which are underneath the AIRAT2’s main board. The batteries might not be fully charged upon

purchase.

2) Charge

A power supply is required to charge the batteries, which have a current limitation function.

The two batteries should be connected to the robot (main board) before charging.

(1) Set the power supply voltage to 17V and max current to 200 mA . At this setting, the power

supply provides 17V up to 200 mA of current output. This is called CV (Constant Voltage)

mode. The power supply provides a constant 200 mA even if the outside circuit requires

more than 200 mA. This is called CC (Constant Current) mode. Generally, a power supply

has LED’s to indicate the CV and the CC mode.

(2) Connect the provided charging cable to the JP9 port on the main board.

(3) Connect the charging cables (RED(+), BLACK(-)) to the power supply(17V, 200mA current

limit). Pay attention to the polarities.

(4) The charging time depends on the battery’s state and the charging current. In the case of

totally discharged battery, it will take approximately 3 hours with 200mA charging current.

(5) Over charging produces heat. Check the batteries regularly. When the batteries are warm,

stop charging.

MOUSE OPERATION
1. Introduction

A mouse is a robot which finds its way through a 16 × 16 block maze(Please refer to

mouse_rule(e).htm on the enclosed CD.). The mouse begins by acquiring information about the

walls. The first time the mouse goes through the maze it does so without knowing anything about

the maze. After it reaches the goal of the maze, it returns to the beginning and runs through the

maze a second time. On the second run-through the mouse uses information it "learned" on its first

trip. This time it make no wrong turns and travel faster. It again returns to the beginning and repeats

the process, going quicker each time.

AIRAT2 is a magnitude of reflected light type of robot. It projects a beam of infrared light at a wall

and judges distances by the amount of light reflected back. It creates and uses its own table of A/D

converted values of the amount of light vs. distance to a wall. The magnitude of reflected light vs.

distance table varies slightly depending upon the infrared emitter, sensor, ambient light, wall status,

etc. It would be more exact to create the table beforehand, but this is not necessary.

2. Downloading Program

In order to test the mouse you must transfer the provided AI2_DEMO.BIN program to the flash

memory of the JS8051-A2 CPU board. To do this it is necessary to read the JS8051-A2 CPU board

manual first. Transmit AI2_DEMO.BIN following the steps below.

Connect the serial cable PC with the JS8051-A2 CPU board. Go to DOS mode in the PC. Go to the

AIRAT2 folder. After that, type the following.

UPA2H AI2_DEMO.BIN ↵

(↵ : Press Enter)

The PC is now ready for transmission. If the JP6's jumper block is pressed in on the JS8051-A2

CPU board pull it out. Turn on the power when the AIRAT2's S3(blue) key is pressed. Then remove

your finger from the S3 key. When the S2(green) key is pressed serial downloading begins. Then

the transmitting byte is shown on the PC monitor. When transmission is complete, press the jumper

block of JP6, press reset button or turn it off on the JS8051-A2 CPU board. After the beep sounds,

the LCD will work. This means the mouse is working properly. If it makes a low sound remove the

buzzer's waterproof tape. Turn the potentiometer R4 on the JS805-A2 board counterclockwise as

far as it will go. Then, position the potentiometer VR1 on the bottom left side of the AIRAT2 main

board to one o'clock. This potentiometer is able to set up electric current to the motor. If the current

is set too low the motor will have no power. However, if it is set too high, it will just eat up power

and cause the mouse's wheels to slide when starting.

Figure 2-1 Potentiometer for reference voltage of ADC on the JS8051-A2 board.

Set the dial to the 1 o'clock position
Figure 2-2 Setting the potentiometer of AIRAT2.

3. Mouse Operation and Main Menu

1) Key Operation

The three keys S1(red), S2(green), S3(blue) on the AIRAT2 main board have the same function as

S1, S2, S3 keys on the JS8051-A2 board. Thus it is convenient to use the big push switch on

AIRAT2 when downloading. The mouse starts operating with a beeping sound after downloading

the flash memory. Don't forget to push JP6's jumper block and restart after downloading. After the

mouse starts, the role of the S2, S3 key is determined by the mouse program. In the demo program

provided the functions are:

S2 : Change menu key(also the cancel key)

S3 : Enter key

After the mouse is turned on, the LCD displays the operation menu. You can change the menu by

pressing the S2 key. To operate the chosen(appearing) function press the S3 key. When there are

more sub menus to choose, press selection(S2) key and then performing(S3) key. If after

performing the sub-menu you want to choose a main menu, press the reset key and start again

from the beginning. Don't worry about the previously chosen menus, they will be maintained.

However, be aware that all information in the memory will be erased if the power is switched off.

2) Main Menu

First Go : First run. While investigating the maze the mouse stores information about the wall and

determines the center goal. When the first run starts the existing wall information is completely

erased and it receives new wall info. When the S3 key is pressed the message "Motor on Run

now?" appears. This means "The power is supplied to the motor and shall I operate?". If you want

to start press the S3 key.

Second Go : It determines the middle goal with the stored wall information.

Level 0 : It goes to and from the goal by making rectangular turns.

Level 1 : It goes to and from the goal by making smooth turns.

Level 2 : The speed increases slightly from 'level 1' and make smooth turns.

Level 3 : The speed increases slightly from 'level 2' and make smooth turns.

Level 4 : The speed increases slightly from 'level 3' and make smooth turns.

Front Table : To create the two front wall sensor tables. When you press the S3 key the message

"Load default?" comes up. This prompt is asking whether you're going to use the table values

already in the mouse. This value is the result of previously entered sample values that were written

to ROM. Therefore, there could be a difference between the ROM's data and the sampling data of

the maze if you change the maze environment or the sensors. In this case it is a good idea to press

S2(cancel) key and begin making a new table. If instead of pressing S2 key you press S3, the table

in the ROM is used as the sensor table. If you want to create a new table of distance vs. magnitude

of reflected light press S2. Then a message will flash "Motor On Run now?". Now place the mouse

against the front wall of the maze. Be sure that there is no room between the mouse and the front

wall. Next press the S3(enter) key. Remember to give the mouse approximately 25 cm(=9.84 in =

0.82 ft) of space to move backwards. An empty space of three blocks should be appropriate. The

mouse moves backward then forward slowly making the two front tables.

1 2

Figure 3-1 Generating front sensor table data.

Side Table : To create the four side wall sensor tables. A message "Motor On Run now?" will flash

upon pressing the S3 key. Place the mouse in the center of an area enclosed by left and right walls

and press the S3 key to operate. Then the mouse will move left and right creating the tables. Next,

a message "right most plz" will flash. Place the mouse very close to the right wall and press the

S3(enter) key. After a "beep" a message "left most plz" will flash. Place the mouse very close to the

left wall and press the S3(enter) key. The table is created when the "beep" sounds.

12 3 4

56
Figure 3-2 Generating side sensor table data.

Sensor Test : Testing the selected sensor. Select the sensor you want to operate by pressing the

S2 key. This will be indicated on the LCD by the display value of the selected sensor. In a case

where two sensors have been selected, the upper line will be the read value and the bottom line will

be the appropriate distance according to its value. If the four sensors are selected, only the

distance to the wall will be displayed. If you want to test other sensors press the S3(enter) key and

then the S2(select) key to select again.

"LF RF" : Left Front & Right Front.

"L45 R45" : Left 45°& Right 45°.

"L R" : Left & Right.

"L45 R45/L R" : Left 45°Right 45°,Left & Right.

Table Transfer : To transfer the table of distance vs. magnitude of reflected light to the PC with

serial communication. While in operation a message "Which Table?" will flash, then a message

"L_Front Table" will flash. Press the S2(select) key to select the sensor you want to transmit and

then press the S3(enter) key to transmit the table values. When you want to continue transmitting

other sensor tables use the S2 key to select again. In order to confirm the transmitted value on the

PC use the SERIAL57.EXE(util folder) or hyper terminal(utility of Windows) or other serial

communication program. The transmission format is 57,600 bps N81(No parity, 8 bit data, 1 stop

bit). Use the hyper terminal to capture the value and use the correct DEFLT_T.INC(default table

array file). You can then make and insert a table suitable to your maze in the program. Of course,

you must compile to do that.

L_Front R_Front

Left Right

Left_45 Right_45

Figure 3-3 Sensor placement.

Get Sample : While operating at 240 pulses it memorizes the distance value of all the sensors. After

acquiring the value it automatically goes into serial transmission mode. Here you have three

selections "L R", "L45 R45", "LF RF". Use the S2 key to select one and use the S3 key to

transmit the value. In order to transmit the second data block press the S3 key once more. After the

transmission is complete use the S2 key to transmit the reflected light table of the other sensors.

Mem Transfer : Transmit the value of the byte array mem[256]. The mem[256] is a defined global
variable in the program. This value does not become erased even if the reset key is pressed. The
mem array is for debugging. While the mouse is moving you can confirm the value by saving the
value you want to know in the mem[256] and then enter into this menu and serial transmit through
the PC. Real-time monitoring is difficult for the mouse. This is because it uses independent power
to move about. (I have looked into using the RF module for wireless transmission but there was no
time to serial transmit during a fast run. Even if the system was faster the serial interruption would
have had considerable effect on the mouse program. Therefore, as a counterproposal I have
thought of this. Try it! You'll find that it's very convenient with no burden on the main program.)

User Test: This was devised to allow the user to test any special (mathematical) functions we have
entered for default. For example;
"LT 0" : Left turn
"RT 1" : Left turn(static turn)
"UT 2" : U-turn
"Go 400p 3" : Go 400 pulses.
"Go Block 4" : Go 1 Block. The mouse goes forward one block(180mm). If it doesn't reach 180mm
the wheels will spin and/or skid. In this case the skidding and/or spinning state must be reduced as
much as possible by adjusting the AIRAT2 potentiometer(VR1).
"Level 5" : empty
"Level 6" : empty
The empty spaces can be filled and used as a option by the user.

9 No OP : No OPeration. No 9 main menu is empty.

First Go

Second Go Level 0
Level 1
Level 2
Level 3
Level 4

Front Table "Load default?" Load default table

newly make table

Side Table make table 1,2,3,4 "right most plz"

"left most plz"

make table 5

make table 6

Sensor Test LF RF
L45 R45
L R
L45 R45/L R

Table Transfer L_Front Table
Left Table
Left_45 Table
Right_45 Table
Right Table
R_Front Table

Get Sample L R
L45 R45
LF RF

Mem Transfer

User Test LT 0
RT 1
UT 2
Go 400p 3
Go Block 4
Level 5
Level 6

9 No OP

S3

S2

Figure 3-4. Main menu.

4. RUN Test

To run the mouse a maze is needed. A 16 × 16 full maze is ideal but a 9 × 9 maze will suffice.

Because the targets ((7,7) (7,8) (8,7) (8,8)) are in the maze you can test the second run. However,

if a 9 × 9 maze is unavailable, a 5 × 5 maze must be used. If in the 5 × 5 maze the mouse cannot

find the goal, it realizes there are no other paths to follow and will stop. It is possible to program the

mouse to search for the goal at position (4,4) but this is too small a sample area to do many tests. If

one has a proper maze with a suitably positioned goal test the mouse as explained below. Ensure

that the motor current limit potentiometer is set properly and that the battery is charged.

1) Create the front table. Front Table Menu(S3) ⇒ "Load Default?"(S2) ⇒ "Motor on run now?"(S3)

2) Create side table. Side Table Menu(S3) ⇒ "Motor On Run Now?(S3) ⇒ "right most plz"(Place it

along the right wall S3) ⇒ "left most plz"(Place it along the left wall S3)

3) First Run. Fist Go(S3) ⇒ "Motor On Run Now?"(S3)

4) If a second run test is required. Second Go(3) ⇒ level 0~4 ⇒ "Motor On Run Now?"(S3)

5. Program Explanation

1) Simulator Program

AI_SIM5.EXE is the mouse simulation program. If you run the program the menu below will appear.

1. Load maze: Reading the maze

2. Run : Run

3. Step run : Not running now

4. Edit maze : Maze editor

5. Save maze

6. Clean trace : To erase trace

7. Clean maze : Erase the maze completely.

8. Quit

Press the arrow key or key in the numbers or use the space bar and press the enter key to start

operating. On the bottom right hand side of the screen the applicable operation menu will appear. If

you wish to quit during the run you must press the Esc key several times. You can make this

simulation program by compiling the provided source file with Borland C++(BC.EXE) compiler. The

file provided is as such.

AI_SIM5.PRJ : Project File

AI_SIM5.CPP : Main Project Source.

AI_GRAPH1.CPP : Functions about graphics.

AI1.H : Header file

*.MAZ : Maze file

AI_SIM5.CPP and AI_GRAPH1.CPP are bound to the AI_SIM5.PRJ project file. The source is all in

C language. The algorithm or functions used in the simulator are almost all used in the real mouse

program. Therefore, it's a good idea to learn and test the algorithms in the simulator before starting

to learn the real mouse program. To explain the whole program would be too much. It would

probably turn out to be quite a thick book. This is an outline to explain the functions.

initialize_data()

Set up information about maze walls beforehand. According to convention the maze perimeter must

be 16 × 16 and enclosed. Three walls are closed at the starting point. The mouse's starting point

coordinates are (0,0) and it is directed north.

make_real_map(x1, y1, x2, y2, dir)

Create a path by what it knows from points (x1, y1) to (x2, y2). Set count, direction, array value.

Assume that unknown routes are blocked.

make_virtual_map(x1, y1, x2, y2, dir)

Create an imaginary path from point(x1, y1) to (x2, y2). Assume that unknown routes are open.

make_virtual_goal_map(x1,y1,dir)

Create an imaginary route from point (x1, y1) to the closest goal. Assume that unknown routes are

open.

make_all_virtual_map(x1, y1,dir)

Create an imaginary route from point (x1,y1) to all the blocks in the maze. Assume that unknown

routes are open.

trace_virtual_path(x,y)

Fill up to 0 from point (x1,y1) to the current mouse position. If there are routes that it hasn't

explored, it saves those positions on vrstack. Accordingly, the upper most position on the stack is

the closest two-way path from where the mouse is currently positioned.

trace_virtual_path2(x,y)

This is the same as trace_virtual_path function but the graphic route is excluded.

trace_virtual_path3(x,y)

This is the same as trace_virtual_path functions but the operations of saving stack is excluded.

trace_real_abs_path()

Fill up to 0 from point(0,0) to the current position of the mouse.

trace_vir_abs_path()

Create an imaginary route from point(0,0) to (goal_x, goal_y).

make_run_table(x1, y1, x2, y2, dir)

Create a run_table[] from point (x1,y1) to (x2,y2). In the run_table[] there are sequences that the

mouse must take. For example, "left turn, forward, forward, right turn, forward,...stop"

mark_count_array_with_zero(x,y)

Fill the path(count array) up to 0 from point(x,y) to the current position of the mouse.

set_nearest_vrstack_position()

Place the position on the vrstack that would be the closest to the current position on the upper most

of the vrstack. In other words, sort by distance.

fastrun()

Run according to the run_table[] contents.

turn2dir(dir,turn)

When the mouse is going in the dir direction, turn it in the turn direction, then return to the direction

the mouse would get.

initialize_data()

Return

make_virtual_goal_map(mouse_x, mouse_y, cur_dir)
go_vir_stack_position()

Memorize after reading wall information

goal_in(): Is the goal in?

search_goal()

NO

YES

Figure 5-1 Flow chart of first go.

Return

find_m ore_short_path()

NO

YES

make_virtual_map(goal_x,goal_y,0,0,goal_dir)
set_nearest_vrstack_position()

make_virtual_map(mouse_x,mouse_y,vrstack[].x,vrstack[].y,cur_dir)
go_vir_stack_position()

Memorize after reading wall information

real map count[0][0] == virtual m ap count[0][0]

Figure 5-2 Flow chart of second search.

2) AIRAT2 Program

The program given for operating AIRAT2 is given as such.

AI2_DEMO.C : Main program

AI_BASE.H : Definition about mouse hardware and basic functions.

AI_SIM1.H : The header file used in the simulator. Used in AI2_DEMO.C, too.

A2_SERIAL.H : Serial library definition.

A2_LCD.H : LCD library definition.

A2_DELAY.H : Delay library definition.

A2SERIAL.R03 : Serial library

A2LCD.R03 : LCD library

A2DELAY.R03 : Delay library

AI_BASE.R03 : Library of basic function of the mouse.

GO_TABLE.INC : Acceleration table

90_TABLE.INC : 90° turn (rectangular turn) table.

180TABLE.INC : 180° turn table.

SMOOTH.INC : 90° turn(smooth turn) table.

DEFLT_T.INC : Default table of distance vs. reflected light.

JS51A2M.XCL : Linker control file of JS8051-A2 board.

X.BAT : A batch file summing up compile, link, bin conversion, downloading and more.

SET_IAR.BAT : A batch file the author uses for creating IAR environment. Must use after adjusting

according to your environment.

A2_DEMO.BIN : Executable file of A2_DEMO.C. You can use this by downloading on JS8051-A2

board directly.

The central algorithm of AI2_DEMO.C program is almost the same as the simulator program.

Functions for controlling the hardware directly have been supplemented and the functions relating

to graphics were removed since they were not needed. To understand the mouse program

immediately is too difficult. You must understand the simulator source before you start studying this

program. The main variables and functions are as follows.

left_trim_flag : when the mouse is inclined towards the left it is set to 1. In this case run the left

motor quickly to arrange.

right_trim_flag : when the mouse is inclined towards the right it is on 1. In this case run the right

motor quickly to arrange.

large_trim_flag : when the mouse is inclined much to one side of the wall it is on 1. In this case

arranging intensity gets bigger.

dist_bojeong_flag : when the mouse is running if the wall next to it or the pole disappears it adjusts

it's distances from where it is.

return_from_multi_go : This shows whether in fastrun() it returned after more than two actions(turn,

forward). when this value is 1 it is so that the mouse coordinates would not have to be

modified.

end_operation : If the left motor(left_end_op) and right motor(right_end_op)'s operation is all

completed the appropriate bit would each become 1 and their byte became 00000011b.

pre_sturn_flag : If the action right before was a smooth turn it is on 1. This to take care of

continuous smooth turns separately.

1_index, r_index : The index for left, right motor straight line acceleration table.

sl_index, sr_index : The index for left, right motor turn acceleration table.

1, r, 145, r45, If, rf : The distance to the wall that the individual left side, right side, left side 45°, right

side 45°, left side ahead, right side ahead sensor shows.

l_history, r_history, l45_history, r45_history, lf_history, rf_history : It has the history of the wall

information it received from its six sensors. The LSB shows current(or the latest) wall

presence and the MSB shows the previous seventh wall. If the value is 11111110b it could

be said that the wall was there in the past and started to disappear recently. However you

must take into consideration that the wall information could not be correct because of the

noise.

gone : It shows the distance in steps the mouse has gone. However, at every middle block it resets

to 0. Therefore, it does not have step values of more than one block.

l_wall, r_wall, 145_wall, r45_wall, f_wall : It shows the information whether or not there is a wall

currently in the direction it is going in.

pre_l_wall, pre_r_wall : It shows whether there has been a wall in the past(the sampling

immediately before). If the operator is using the existence of the current wall together with

the sampling taken immediately before, it can predict at what point the walls will disappear or

appear.

pulse_go(WORD pulse_count)

Output pulse_count to the motor.

static_mm_go(BYTE mm)

It goes at the distance of mm. The distance variable unit is mm(millimeter). One must be cautious

that the parameter mm is the byte variable.

static_degree_turn(BYTE angle)

Turn as much as the angle.

change_run_table(void)

Change the multiple one-block forward movements into one long forward movement.

change_run_table2(void)

Change the right-angle turn into a smooth turn

set_count_l(WORD v)

The function for setting up the v value of the outer timer0(inside M4-64/32) that controls the left

motor. This value shows when the next interrupt will come(it's a time constant). The bigger the

value the longer intervals between interrupt and the motor will turn more slowly. It is not just writing

the v to the timer0. It changes the proportion of v according to the trim_flag.

set_count_r(WORD v)

set_count_r() has the same ability as set_count_1 but applicable to the right motor.

EX0_int (void)

This is interrupt 0's ISR(Interrupt service routine) and it manages the left motor. At the end of the

function, TF0(8051 inside timer interrupt 0 flag) is set to 1, this is in order to make a sensor

interrupt(timer interrupt 0). You can see the sensor interrupt is executed every two interrupt 0.

Because of the CPU speed a slight expedient was used.

EX1_int (void)

This is interrupt 1's ISR(Interrupt service routine) and it manages the right motor.

T0_int (void)

The function of adjustment that is considered the most difficult. It is forcefully called from EX0_int().

This happens here for position adjustment and others such as distance adjustment.

T1_int (void)

It periodically reads the sensors. Whenever an interrupt happens it only reads the two sensors and

renews.

3) Miscellaneous Program

In the utility folder there are some acceleration table and sources to generate them. If you use

Borland C 3.1 you can compile. You can get the table when you use redirection(>).

Example) A2_TABLE > GO_TABLE.INC

40

80
88

Unit: mm
Figure 5-3 Outlines of AIRAT2

6. Driving Stepping Motor

AIRAT2 utilizes two PLDs(Programmable Logic Device) to generate control signals for the two

stepper/stepping motors. Each PLD(16V8) controls each motor. The PLD(16V8) can generate a

two-phase-on full step (2-phase) signal and a half step (1-2-phase) signal. AIRAT2 uses half step

signal to drive stepper motor. Two SLA7204Ms, unipolar stepper motor controller/driver, are used

as stepper motor drivers. Refer to the pdf data in the CD for more details. The provided two 16V8

chips are already programmed. The PALASM source and *.jed file of the PLD are provided in the

CD.

Signal Function

CLK_L(R) Clock for the motor. The speed of the clock is the speed of the motor

DIR_L(R) Direction of the motor. 0=counterclockwise, 1=clockwise

EN_L(R) Motor enable. 0=enable(Turn on), 1=disable(Turn off)

PHASE Driving method select. 0 = ‘2-phase’, 1 = ‘1-2-phase’

Table 6-1 Signals for 16V8 PLD

A stepper motor steps by switching the windings in sequence. The following two modes are
available for the AIRAT2. AIRAT2 uses a half step mode as default.

1 : energize.
0 : de-energize.

The ‘PHASE’ signal outputs are pulled-up(refer to schematic) to the VCC and the JS8051-A2

doesn't control it. Therefore, AIRAT2 is made to move according to default ‘1-2-phase’ (half step)

driving method. If you want to change to the ‘2-phase’ driving method, short the SMD jumper JP8. If

changed to the ‘2-phase’, the motor interrupt will decrease and the mouse will speed up but it will

spin and/or skid and will lose its reliability and become unstable. It is understood that to use the ‘2-

phase’ driving method all aspects of the program must be correct. It appears that the ‘1-2-phase’

driving method is more advantageous than ‘2-phase’ method for this mouse.

www.microrobot.com

1 2 3 4 5 6 7 8
A 1 0 0 0 0 0 1 1
B 1 1 1 0 0 0 0 0
A 0 0 1 1 1 0 0 0
/B 0 0 0 0 1 1 1 0

Table 6-3 Half step mode (1-2-phase)

1 2 3 4
A 1 0 0 1
B 1 1 0 0
/A 0 1 1 0
/B 0 0 1 1

Table 6-2 Two-phase-on full step mode (2-phase)

www.microrobot.com

Main Board Silkscreen

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

L_MOTOR

R_MOTOR

n

AIRAT2

Microrobot Co.,Ltd

B

1 1Saturday, July 01, 2000

Title

Size Document Number Rev

Date: Sheet of

CLK_L INA1 CLK_R INB1
DIR_L INA2 DIR_R INB2
EN_MOT INA3 EN_MOT INB3 INA1

INA4 INB4 INA2
INA3
INA4

PHASE PHASE

P1.2 P1.3

RESET INB1
INB2
INB3
INB4

LEFT_LED RIGHT_LED FRONT_LED

D0 IR1
D1 IR2
D2 IR3
D3 IR4
D4 IR5
D5 IR6

BUZZER
WRCS1

AIN1

AIN2

DIR_L DIR_R AIN1 AIN2 TR_IN1 IR1 TR_IN1
LEFT_LED P1.2 RIGHT_LEDP1.3 AIN3 AIN4 TR_IN2 IR2 TR_IN2 AIN3

BUZZER EN_MOT AIN5 AIN6 TR_IN3 IR3 TR_IN3
TR_IN4 IR4 TR_IN4

D5 D4 WRCS1 TR_IN5 IR5 TR_IN5
D3 D2 TR_IN6 IR6 TR_IN6 AIN4
D1 D0 PULSE0CLK_L PULSE1 CLK_R

AIN5

FRONT_LED
AIN6

RESET

AIN1
AIN2
AIN3
AIN4
AIN5
AIN6

VCC

VCC

MVCC

MVCC

MVCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

RP4
1K

1
2 3 4 5

C22

103

C21

103

C20

103

C19

103

C18

103

C17

103

U1

16V8

1
2
3
4
5
6
7
8
9

11

12
13
14
15
16
17
18
19

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9

F0
F1
F2
F3
F4
F5
F6
F7

JP8
SMD JUMPER2

1
2

RP5

10K

1
2345

JP9

HEADER 2

1
2

RP1

4.7K

1 2
3
4
5
6
7
8
9

R6

1

R5

1

C2

2200pF

C1 2200pF

U3

SLA7024M

6
5

17
16

7

2
13

10

14

3

9
18
11
8
1

12

4
15

INA
INA
INB
INB

VSA

TDA
TDB

RSB

REFB

REFA

RSA
OUTB
OUTB
OUTA
OUTA

VSB

GA
GB

U2

16V8

1
2
3
4
5
6
7
8
9

11

12
13
14
15
16
17
18
19

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9

F0
F1
F2
F3
F4
F5
F6
F7

T2
TEST

T1
TEST

JP4

HEADER 2

1
2

JP3

HEADER 2

1
2

+ C16
220uF

+

C15

100uF/25V

D5
1N5819

L1

330uH

U7
LM2575

4

2

53

1
FBACK

OUT

O
N

G
N

D

VIN

S4

SW

JP6

HEADER 8X2

12
34
56
78
910

1112
1314
1516

JP5

HEADER 17X2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34

+ C14
220uF/10V

C13
0.1uF

RP3

47K

12
3
4
5

RP2

2.2K

1 2
3
4
5

+ C9
220uF 25V

JP1

HEADER 6

1
2
3
4
5
6

R8

1

C6
470pF

C5

470pF

C4

2200pF

C3 2200pF

+ C10
220uF 25V

U4

SLA7024M

6
5

17
16

7

2
13

10

14

3

9
18
11
8
1

12

4
15

INA
INA
INB
INB

VSA

TDA
TDB

RSB

REFB

REFA

RSA
OUTB
OUTB
OUTA
OUTA

VSB

GA
GB

JP2

HEADER 6

1
2
3
4
5
6

R2
510

T6
TEST

R7

1

T5

TEST

T4

TEST

T3

TEST

SP1
PIEZO

C8

470pF

C7

470pF

VR1

100

U6

TD62003

1
2
3
4
5
6
7

16
15
14
13
12
11
10
98

IN0
IN1
IN2
IN3
IN4
IN5
IN6

Q0
Q1
Q2
Q3
Q4
Q5
Q6

COMGND

U5

74HC574

2
3
4
5
6
7
8
9

11
1

19
18
17
16
15
14
13
12

D1
D2
D3
D4
D5
D6
D7
D8

CLK
OC

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

D4
LED

D3
LED

D2
LED

JP7

HEADER 7X2

12
34
56
78
910

1112
1314

S1
PUSH SW

S3
PUSH SW

S2
PUSH SW

C12
0.1uF

C11
0.1uF

R1

1K D1
LED

RP6

10K

12
3
4
5
6
7

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

YELLOW BLACK

Left

Left_45

Right_45

Right

R_Front

L_Front

n

AIRAT2_SENSOR

Microrobot Co., Ltd

B

1 1Saturday, July 01, 2000

Title

Size Document Number Rev

Date: Sheet of

TR_IN1

TR_IN2

TR_IN1 IR1
TR_IN2 IR2
TR_IN3 IR3 TR_IN3
TR_IN4 IR4
TR_IN5 IR5
TR_IN6 IR6

TR_IN4

TR_IN5

TR_IN6

VCC

VCC

Q1
ST-1KL

D6

EL-1KL

D5

EL-1KL

D4

EL-1KL

D3

EL-1KL

D2

EL-1KL

R1
3.3 ohm

D1

EL-1KL

Q6
ST-1KL

Q5
ST-1KL

Q4
ST-1KL

Q3
ST-1KL

Q2
ST-1KL

JP1

HEADER 7X2

12
34
56
78
910

1112
1314

	AIRAT2
	1. Specifications
	2. Introduction
	3. Features
	4. Battery
	1) Connection
	2) Charge
	MOUSE OPERATION
	1. Introduction
	2. Downloading Program
	3. Mouse Operation and Main Menu
	1) Key Operation
	2) Main Menu
	4. RUN Test
	5. Program Explanation
	1) Simulator Program
	2) AIRAT2 Program
	3) Miscellaneous Program
	6. Driving Stepping Motor
	Main Board Silkscreen
	Main Board Schematic
	Sensor Board Schematic

