Features

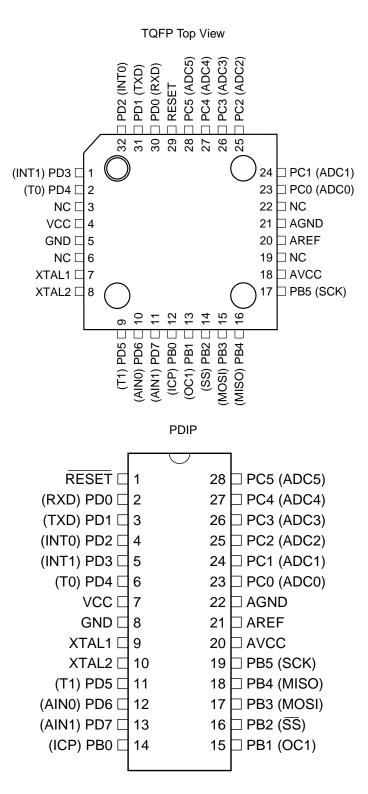
- High-performance and Low-power AVR® 8-bit RISC Architecture
 - 118 Powerful Instructions Most Single Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Up to 8 MIPS Throughput at 8 MHz
- Data and Non-volatile Program Memory
 - 4K Bytes of In-System Programmable Flash Endurance 1,000 Write/Erase Cycles
 - 128 Bytes of SRAM
 - 256 Bytes of In-System Programmable EEPROM Endurance: 100,000 Write/Erase Cycles
 - Programming Lock for Flash Program and EEPROM Data Security
- Peripheral Features
 - One 8-bit Timer/Counter with Separate Prescaler
 - Expanded 16-bit Timer/Counter with Separate Prescaler,
 - Compare, Capture Modes and 8-, 9-, or 10-bit PWM
 - On-chip Analog Comparator
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - Programmable UART
 - 6-channel, 10-bit ADC
 - Master/Slave SPI Serial Interface
- Special Microcontroller Features
 - Brown-out Reset Circuit
 - Enhanced Power-on Reset Circuit
 - Low-power Idle and Power-down Modes
- Power Consumption at 4 MHz, 3V, 25°C
 - Active: 3.4 mA
 - Idle Mode: 1.4 mA
 - Power-down Mode: <1 µA</p>
- I/O and Packages
 - 20 Programmable I/O Lines
 - 28-lead PDIP and 32-lead TQFP
- Operating Voltage
 - 2.7V 6.0V for the AT90LS4433
 - 4.0V 6.0V for the AT90S4433
- Speed Grades
 - 0 4 MHz for the AT90LS4433
 - 0 8 MHz for the AT90S4433

8-bit **AVR**[®] Microcontroller with 4K Bytes of In-System Programmable Flash

AT90S4433 AT90LS4433

Summary

Not Recommend for New Designs. Use ATmega8.


Rev. 1042HS-AVR-04/03

Note: This is a summary document. A complete document is available on our web site at *www.atmel.com*.

Pin Configurations

Description

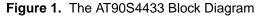
The AT90S4433 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the AT90S4433 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

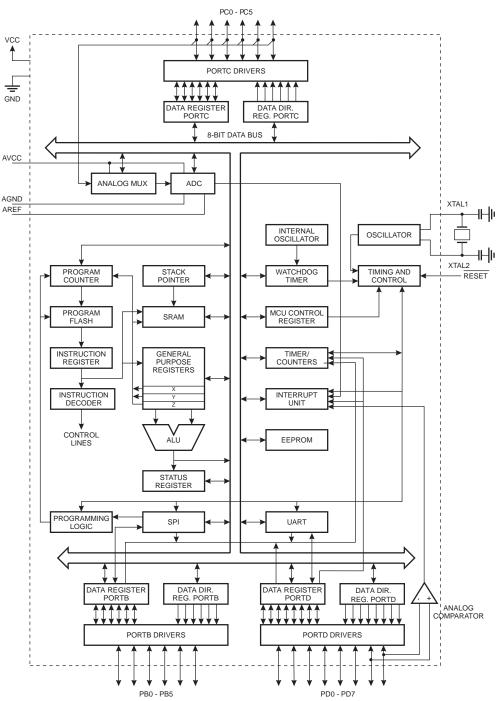
The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction, executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The AT90S4433 provides the following features: 4K bytes of In-System Programmable Flash, 256 bytes of EEPROM, 128 bytes of SRAM, 20 general purpose I/O lines, 32 general purpose working registers, two flexible Timer/Counters with compare modes, internal and external interrupts, a programmable serial UART, 6-channel, 10-bit ADC, programmable Watchdog Timer with internal Oscillator, an SPI serial port and two software-selectable Power-saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset.

The device is manufactured using Atmel's high-density non-volatile memory technology. The On-chip Flash Program memory can be re-programmed In-System through an SPI serial interface or by a conventional non-volatile memory programmer. By combining a RISC 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT90S4433 is a powerful microcontroller that provides a highly flexible and cost-effective solution to many embedded control applications.

The AT90S4433 AVR is supported with a full suite of program and system development tools including: C Compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators and evaluation kits.


Device	Flash	EEPROM	SRAM	Voltage Range	Frequency
AT90S4433	4K	256B	128B	4.0V - 6.0V	0 - 8 MHz
AT90LS4433	4K	256B	128B	2.7V - 6.0V	0 - 4 MHz


 Table 1. Comparison Table

Block Diagram

Pin Descriptions

vcc	Supply voltage.
GND	Ground.
Port B (PB5PB0)	Port B is a 6-bit bi-directional I/O port with internal pull-up resistors. The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated.
	Port B also serves the functions of various special features of the AT90S4433 as listed on page 73.
	The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port C (PC5PC0)	Port C is a 6-bit bi-directional I/O port with internal pull-up resistors. The Port C output buffers can sink 20 mA. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. Port C also serves as the analog inputs to the A/D Converter.
	The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port D (PD7PD0)	Port D is an 8-bit bi-directional I/O port with internal pull-up resistors. The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated.
	Port D also serves the functions of various special features of the AT90S4433 as listed on page 81.
	The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
RESET	Reset input. An External Reset is generated by a low level on the $\overrightarrow{\text{RESET}}$ pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
XTAL1	Input to the inverting oscillator amplifier and input to the internal clock operating circuit
XTAL2	Output from the inverting oscillator amplifier
AVCC	AVCC is the supply voltage for Port A and the A/D Converter. If the ADC is not used, this pin must be connected to V_{CC} . If the ADC is used, this pin should be connected to V_{CC} via a low-pass filter. See page 64 for details on operation of the ADC.
AREF	AREF is the analog reference input for the A/D Converter. For ADC operations, a volt- age in the range 2.0V to AVCC must be applied to this pin.
AGND	If the board has a separate analog ground plane, this pin should be connected to this ground plane. Otherwise, connect to GND.

6 AT90S/LS4433

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F (\$5F)	SREG	I	Т	Н	S	V	N	Z	С	page 19
\$3E (\$5E)	Reserved	-	-	-	-	-	-	-	-	page 20
\$3D (\$5D)	SP	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 20
\$3C (\$5C)	Reserved		ł	4	1	4	ł	ł		
\$3B (\$5B)	GIMSK	INT1	INT0	-	-	-	-	-	-	page 27
\$3A (\$5A)	GIFR	INTF1	INTF0							page 27
\$39 (\$59)	TIMSK	TOIE1	OCIE1	-	-	TICIE1	-	TOIE0	-	page 28
\$38 (\$58)	TIFR	TOV1	OCF1	-	-	ICF1	-	TOV0	-	page 29
\$37 (\$57)	Reserved		I				L	I		
\$36 (\$56)	Reserved									
\$35 (\$55)	MCUCR	-		SE	SM	ISC11	ISC10	ISC01	ISC00	page 30
\$34 (\$54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	page 26
\$33 (\$53)	TCCR0	-	-	-	-	-	CS02	CS01	CS00	page 34
\$32 (\$52)	TCNT0				Timer/Co	unter0 (8 Bits)				page 35
\$31 (\$51)	Reserved									
\$30 (\$50)	Reserved									
\$2F (\$4F)	TCCR1A	COM11	COM10	_	_	_	_	PWM11	PWM10	page 37
\$2E (\$4E)	TCCR1B	ICNC1	ICES1	-	_	CTC1	CS12	CS11	CS10	page 38
\$2D (\$4D)	TCNT1H			Time	er/Counter1 – Co	unter Register Hig	gh Byte		·	page 39
\$2C (\$4C)	TCNT1L			Tim	er/Counter1 – Co	unter Register Lo	w Byte			page 39
\$2B (\$4B)	OCR1H			Timer/Co	ounter1 – Output	Compare Registe	r High Byte			page 40
\$2A (\$4A)	OCR1L					Compare Registe				page 40
\$29 (\$49)	Reserved						~			
\$28 (\$48)	Reserved									
\$27 (\$47)	ICR1H			Timer/0	Counter1 – Input	Capture Register	High Byte			page 41
\$26 (\$46)	ICR1L			Timer/	Counter1 - Input	Capture Register	Low Byte			page 41
\$25 (\$45)	Reserved									
\$24 (\$44)	Reserved									
\$23 (\$43)	Reserved									
\$22 (\$42)	Reserved									
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 43
\$20 (\$40)	Reserved		1			1	1	L		1 0
\$1F (\$3F)	Reserved									
\$1E (\$3E)	EEAR				EEPROM A	ddress Register				page 45
\$1D (\$3D)	EEDR					Data Register				page 45
\$1C (\$3C)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	page 45
\$1B (\$3B)	Reserved		I				1	1		
\$1A (\$3A)	Reserved									
\$19 (\$39)	Reserved									
\$18 (\$38)	PORTB	-	-	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 72
\$17 (\$37)	DDRB	-	-	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 72
\$16 (\$36)	PINB	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 72
\$15 (\$35)	PORTC	-	-	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	page 78
\$14 (\$34)	DDRC	-	-	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	page 78
\$13 (\$33)	PINC	-	-	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	page 78
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	page 80
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 80
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	page 80
\$0F (\$2F)	SPDR		-			ta Register	L.	L		page 52
\$0E (\$2E)	SPSR	SPIF	WCOL	-	-	_	_	-	-	page 52
\$0D (\$2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	СРНА	SPR1	SPR0	page 51
\$0C (\$2C)	UDR					Data Register				page 57
\$0B (\$2B)	UCSRA	RXC	ТХС	UDRE	FE	OR	_	_	-	page 57
\$0A (\$2A)	UCSRB	RXCIE	TXCIE	UDRIE	RXEN	TXEN	CHR9	RXB8	TXB8	page 58
\$09 (\$29)	UBRR					d Rate Register				page 61
\$08 (\$28)	ACSR	ACD	AINBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	page 62
\$07 (\$27)	ADMUX	-	ADCBG	-	-	-	MUX2	MUX1	MUX0	page 62 page 68
\$06 (\$26)	ADCSR	ADEN	ADODO	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 68
\$05 (\$25)	ADCSK	ADEN -	- ADSC		ADIF	ADIE –	- ADF32	ADP31 ADC9	ADF30 ADC8	page 68
\$04 (\$24)	ADCL	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC3	ADC0	page 09 page 69
\$03 (\$23)	UBRRHI	ADOI	7000	A003	AD04	7003		ate Register High	1000	page 69 page 61
	UDIKKI					1	Unit Daud Ri	ate inegister migh		page of
	Record									
\$02 (\$22) \$01 (\$21)	Reserved Reserved									

AMEL

Register Summary

- Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
 - 2. Some of the Status Flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

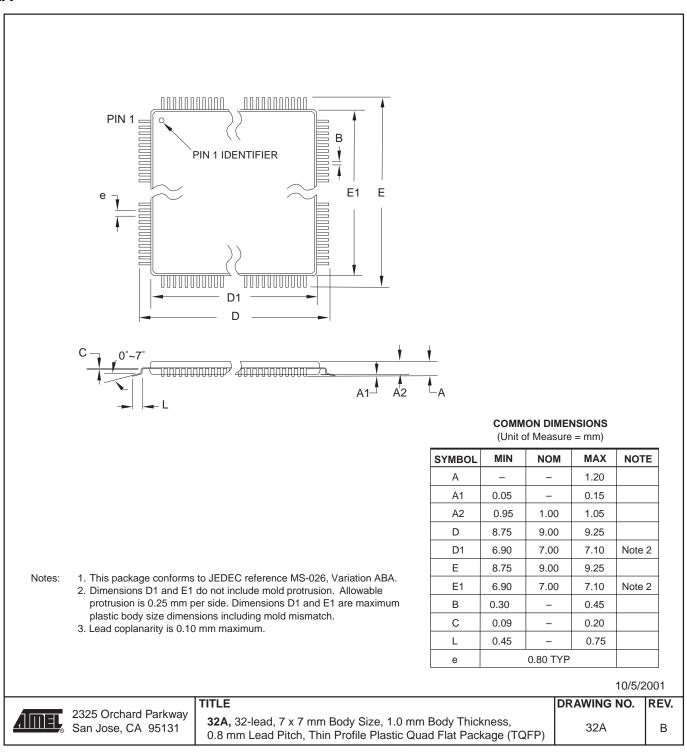
Instruction Set Summary

Mnemonic	Operands	Description	Operation	Flags	# Clocks
ARITHMETIC AND	LOGIC INSTRUCTION	S		1	L
ADD	Rd, Rr	Add Two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry Two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl, K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract Two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry Two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl, K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \vee R$	Z,N,V Z,N,V	1
ORI	Rd, Ki	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V Z,N,V	1
EOR	Rd, Rr		$Rd \leftarrow Rd \oplus Rr$	Z,N,V Z,N,V	1
		Exclusive OR Registers			1
COM	Rd	One's Complement	Rd ← \$FF - Rd	Z,C,N,V	
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd - 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow FF$	None	1
BRANCH INSTRUC	TIONS				
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
RET		Subroutine Return	$PC \leftarrow STACK$	None	4
RETI		Interrupt Return	$PC \leftarrow STACK$	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd, Rr	Compare	Rd - Rr	Z,N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C	Z,N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd - K	Z,N,V,C,H	1
SBRC	Ru, K	Skip if Bit in Register Cleared	if (Rr(b) = 0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(b) = 1) \operatorname{PC} \leftarrow \operatorname{PC} + 2 \operatorname{or} 3$	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC \leftarrow PC + k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC \leftarrow PC + k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less than Zero, Signed	if $(N \oplus V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T-flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T-flag Cleared	if $(T = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
		5			
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
DATA TRANSFER		· · · · · · · · · · · · · · · · · · ·			
MOV	Rd, Rr	Move between Registers	$Rd \leftarrow Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2

AT90S/LS4433

Instruction Set Summary (Continued)

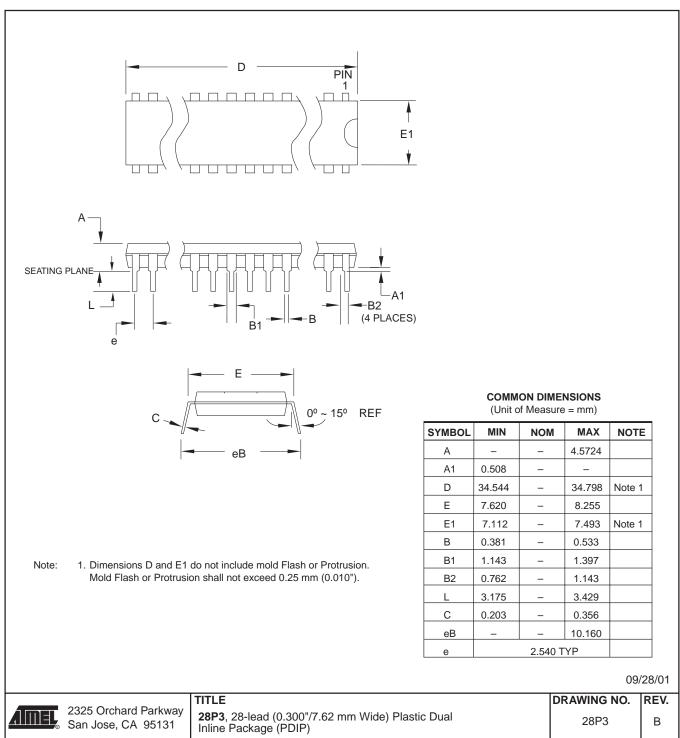
Mnemonic	Operands	Description	Operation	Flags	# Clocks
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, -Y	Load Indirect and Pre-dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-inc.	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	2
LD	Rd, -Z	Load Indirect and Pre-dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-inc.	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$	None	2
ST	-X, Rr	Store Indirect and Pre-dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	-Y, Rr	Store Indirect and Pre-dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q, Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-inc.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q, Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(k) \leftarrow Rr$	None	2
LPM	k, ru	Load Program Memory	$R0 \leftarrow (Z)$	None	3
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	$P \leftarrow Rr$	None	1
PUSH	Rr	Push Register on Stack	$STACK \leftarrow Rr$	None	2
POP	Rd		Rd ← STACK	None	2
BIT AND BIT-TES		Pop Register from Stack	Ru ← STACK	NOTE	2
SBI	P, b	Set Bit in I/O Register	1/0(P h) (1	None	2
CBI	P, b		$I/O(P,b) \leftarrow 1$	None	2
LSL	Rd	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$		1
	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR		Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	
ROL	Rd Rd	Rotate Left through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR		Rotate Right through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n = 06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1
BSET	S	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit Load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	Ν	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	l ← 1	1	1
CLI		Global Interrupt Disable	l ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Two's Complement Overflow	V ← 1	V	1
CLV		Clear Two's Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half-carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half-carry Flag in SREG	H ← 0	н	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
	1				


Ordering Information

Power Supply	Speed (MHz)	Ordering Code	Package	Operation Range
2.7 - 6.0V	4	AT90LS4433-4AC AT90LS4433-4PC	32A 28P3	Commercial (0°C to 70°C)
		AT90LS4433-4AI AT90LS4433-4PI	32A 28P3	Industrial (-40°C to 85°C)
4.0 - 6.0V	8	8 AT90S4433-8AC 32A AT90S4433-8PC 28P3		Commercial (0°C to 70°C)
		AT90S4433-8AI AT90S4433-8PI	32A 28P3	Industrial (-40°C to 85°C)

	Package Type
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)

Packaging Information



Errata for AT90S/LS4433 Rev. Rev. C/D/E/F

- · BOD Keeps the Device in Reset at Low Temperature
- Fuses and Programming Mode
- Incorrect Channel Change in Free Running Mode
- Bandgap Reference Stabilizing Time
- Brown-out Detection Level
- Serial Programming at Voltages below 2.9V
- UART Loses Synchronization if RXD Line is Low when UART Receive is Disabled

7. BOD Keeps the Device in Reset at Low Temperature

When the device operates at low temperature (below 0° C) and the BOD is enabled, tha part may fail to start up. AT low temperature the BOD may never release the reset, and the part will not start the application. The problem will only occur during start-up and an already running application wil not go into reset even if the temperature goes below 0° C.

Note that this also affects the described workaround for Errata no. 4.

Problem Fix/Workaround

If the device operates at low temperature and a BOD is required, an external BOD circuit must be used. Alternatively, ATmega8 can be used instead of AT90S/LS4433.

6. Fuses and Programming Mode

After programming the Fuses in Serial Programming mode, it is not possible to program the Flash or EEPROM. If leaving Programming mode, it is not possible to reenter Programming mode.

Problem Fix/Workaround

Power the part down and backup again after programming the Fuses or leaving Programming mode.

5. Incorrect Channel Change in Free Running Mode

If the ADC operates in Free Running mode and channels are changed by writing to ADMUX, shortly after the ADC Interrupt Flag (ADIF in ADCSR) is set, the new setting in ADMUX may affect the ongoing conversion.

Problem Fix/Workaround

Use Single Conversion mode when scanning channels, or avoid changing ADMUX util at least 0.5 ADC clock cycles after ADIF goes high.

4. Bandgap Reference Stabilizing Time

The time for the internal voltage reference for the Analog Comparator to stabilize is longer than specified. The stabilizing period starts after the bandgap reference has been selected, and can go on for as much as 10 seconds.

Problem Fix/Workaround

The Bandgap reference will be stable immediately if the internal Brown-out Detector is enabled.

3. Brown-out Detection Level

The Brown-out Detection level can increase when there is heavy I/O-activity on the device. The increase can be significant when some of the I/O pins are driving heavy loads.

Problem Fix/Workaround

Select a V_{CC} well above the Brown-out Detection level.

Avoid loading I/O ports with high capacitive or resistive loads.

2. Serial Programming at Voltages below 2.9V

At voltages below 2.9V, serial programming might fail.

Problem Fix/Workaround

Keep V_{CC} at 2.9V or higher during In-System Programming.

1. UART Loses Synchronization if RXD Line is Low when UART Receive is Disabled

The UART will detect a UART start bit and start reception even if the UART is not enabled. If this occurs, the first byte after reenabling the UART will be corrupted.

Problem Fix/Workaround

Make sure that the RX line is high at start-up and when the UART is disabled. An external RS-232 level converter keeps the line high during start-up.

AT90S/LS4433

Data Sheet Change Log for AT90S/LS4433

Changes from Rev. 1042E-09/01 to Ref. 1042F-03/02

Changes from Rev. 1042F-03/02 to Ref. 1042G-09/02

Changes from Rev. 1042G-09/02 to Ref. 1042H-04/03

- This section containes a log on the changes made to the data sheet for AT90S/LS4433. All refereces to pages in Change Log, are referred to this document.
- 1 Updated minimum AREF Voltage on page 5 and page 64.
- 2 Corrected VBOT Max for BODLEVEL = 1 in Table 4 on page 22.
- 3 Updated Corporate Template.
- 1 Added wathermark "Not recommended for new designs. Use ATmega8".
- 2 Added Errata Sheet to the Data Sheet.
- 1 Updated the "Errata for AT90S/LS4433 Rev. Rev. C/D/E/F" on page 13.
- 2 Updated "Packaging Information" on page 11.

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

Printed on recycled paper.