# MR-Servo8 User Manual



# **CONTENTS**

### PART 1 : MR-Servo8

- 1. Introduction
- 2. Features
- 3. Control

### PART 2 : CPU Board

- 1. Placement Diagram (Silkscreen)
- 2. Circuit Diagram
- 3. Parts List

### PART 3 : Software Tools

- 1. AVR Development Program Installation
- 2. How to use WinAVR GCC
- 3. How to use PonyProg2000

### PART 4 : Compile and Download

1. Compile and Download

### PART 5 : Source Codes

# PART1: MR-Servo8

## 1. Introduction

MR-Servo8 is a small pre-assembled R/C(Radio Control) servomotor controller, which has 16 R/C servo connectable I/O pins. The MR-Servo8 can control up to 8 R/C servos at the same time. The MR-Servo8 uses an ATmega8(Atmel AVR series) CPU chip as a controller. The ATmega8 has a 4K bytes In-System Programmable Flash memory, 128 bytes SRAM, 256 bytes EEPROM and many other peripherals. The user can download a program to the board without a ROM Writer using the ISP function. A free C-compiler (WinAVR) is available.

## 2. Features

- ATmega8 (Atmel AVR series, 16MHz X-tal(16 MIPS) but internal 8MHz RC Oscillator setting is required for the RC Servo Source Example. Refer to "Security Bit Settings for ATMega Family.pdf" for the setting.)
- 8K bytes ISP flash, 1K bytes SRAM, 512 bytes EEPROM, three Timers, ADC 8ch, UART
- 16 R/C servos connectable

(16 I/O port pins)

- Controls up to 8 R/C servomotors at the same time
- C source code
- Free Windows C compiler(WinAVR AVR GCC)
- ISP downloader(Optional)
- On board piezo Buzzer

## 3. Control

The board has sixteen I/O port pins and can control 8 servomotors at the same time. The ATmega8 CPU has three internal counters. The board generates up to eight periodic pulses using the timers. The periodic pulses control R/C servomotors.

# PART 2: BOARD

## 1. Placement Diagram(Silkscreen)



Fig 1.1 ATmega8 Servomotor control board silkscreen.



## 3. Parts List

| NO | Reference  | Parts name                          | Value            | Qty. | Remark                 |
|----|------------|-------------------------------------|------------------|------|------------------------|
| 1  | C1, C2     | Capacitor                           | 30pF             | 2    | Ceramic Condenser      |
| 2  | C3         | "                                   | 1uF              | 1    | Electrolytic Condenser |
| 3  | C4         | 33                                  | 100uF/10V        | 1    | Electrolytic Condenser |
| 4  | C5, C6     | 33                                  | 104(0.1uF)       | 2    | Monolithic Condenser   |
| 5  | D1, D2, D3 | LED                                 | RED 3ø           | 3    |                        |
| 6  | J1         | Connector                           | 5045             | 1    | 5V Power Part          |
| 7  | J2         | "                                   | HEADER PIN(Male) | 1    | SERVO HEADER 48PIN     |
| 8  | J3         | "                                   | CON10AP          | 1    | HIF3F/10PIN            |
| 9  | J4, J5     | "                                   | 5267             | 2    | Battery Power Part     |
| 10 | R1, R2, R3 | Resistor                            | 470Ω             | 3    |                        |
| 11 | R4, R5     | "                                   | 10K              | 2    |                        |
| 12 | SP1        | BUZZER                              | BTG-47           | 1    | PIEZO                  |
| 13 | S1         | S/W                                 | SLIDE S/W        | 1    |                        |
| 14 | S2, S3     | "                                   | Tack S/W         | 2    |                        |
| 15 | U1         | MCU                                 | ATmega8/TQFP     | 1    | AVR Microcontroller    |
| 16 | Y1         | X-TAL                               | 16MHz            | 1    | ATS type               |
| 17 |            | Printed Circuit<br>Board(PCB)       |                  | 1    | Main PCB               |
| 18 |            | Battery Holder &<br>Power Connector | 5051-2P          | 1    | AA size * 4            |
| 19 |            | Pin head Screw                      |                  | 4    | 3ø                     |
| 20 |            | Nut                                 |                  | 12   | Зø                     |
| 21 |            | Flat head Screw                     |                  | 4    | 3ø                     |
| 22 |            | Downloading<br>Adapter              |                  | 1    | Option                 |
| 23 |            | Ribbon Cable                        |                  | 1    | Option (1m)            |





Fig 2.1 Downloading Adapter

Fig 2.2 Ribbon cable



Fig 2.3 Battery Holder & Power Connector

# **PART 3 : Software Tools**

## **1. AVR Development Program Installation**

### **AVR Development Tools**

There are many different kinds of development tools for AVR microcontrollers. Atmel, the AVR CPU

manufacturer, provides some AVR development tools free. WinAVR GCC is a free Windows C-compiler.

Wavrasm : AVR assembler, Atmel.
AVR Studio : AVR Emulator/Simulator, Atmel.
AVR ISP : ISP downloading program, Atmel.
PonyProg2000 : ISP downloading program, Lancos. (Recommended)
WinAVR GCC : C-compiler, GNU. (Recommended)

### System requirements for AVR development tools

- Windows 9X/ME or NT/2000/XP
- Pentium-133 or higher
- At least 4 Mbytes of RAM
- CD-ROM Drive

### **AVR ISP installation:**

Run setup.exe in the CD's avr\_isp folder.

#### WinAVR GCC installation

Refer to "How to use WinAVR for Microrobot AVR Products(Eng).pdf".

## 2. How to use WinAVR Gcc

Refer to "How to use WinAVR for Microrobot AVR Products(Eng).pdf".

## 3. How to use PongProg2000

Refer to the 'PonyProg Manual for Microrobot AVR Products.pdf' and the 'Security Bit Setting for ATMega

Family.pdf' files.

# **PART 4 : Compile and Download**

## 1. Compile and Download

Compile the source file and download the executable file in the following order.

- Put four batteries into the battery holder and insert the power connector to J1 of the Main PCB.
- Connect the downloading adapter to the PC printer port. Then connect the downloading adapter to the CPU board by using the ribbon cable.
- Turn on the power switch S1 on the control board. LED D1 turns on.
- Download sample code from our website ("How to use WinAVR for Microrobot AVR Products(Eng).pdf").
- Create a source folder and copy the prototype sample code, including the makefile, from the file you've downloaded.
- Type "make all" on the DOS command line platform to compile it.
- Debug and recompile if there are any errors or warnings.
- If there are no errors, the 'Errors: none' message appears.
- Run PonyProg2000.
- Do "I/O port setup" properly. Refer to 'PonyProg Manual for Microrobot AVR Products.pdf'.
- Select 'Device  $\rightarrow$  AVR micro  $\rightarrow$  ATmega8'.
- Select 'File  $\rightarrow$  Open Program File' and load the hex file.
- Select 'Command → Program' or press Ctrl + P to start downloading. If a 'Program Failed' message appears, select 'Command → Erase' or press Ctrl + E to erase the flash memory, and then try to program it again.
- Remove the ribbon cable from the CPU board and restart the board.

# **PART 5 : Source Codes**

Refer to "OWL ROBOT User Manual(Eng,mega8).pdf".

www.microrobot.com